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The concept of a decibel (dB) is understandably difficult and confusing for someone 
just being introduced to it. Combining specifications for gain, power, and voltage 
(and current, but not so often) that mix dB, dBm, dBW, watts, milliwatts, voltage, 
millivolts, etc., often requires converting back and forth between linear values and 
decibel values. This brief tutorial will help to clarify the difference between working 
with decibels and working with linear values.

Anxiety Alert: Using decibels involves working with logarithms.

Logarithms (logs) were first conceived of in the early 1600s by Scottish 
mathematician John Napier, as a tool for simplifying multiplication and division 
operations by converting them to faster and less error prone addition and subtraction
operations, respectively. This is made possible because of the way multiplication of 
two numbers expressed as similar base numbers with exponents can be 
accomplished by merely adding the exponents together. Division of those same 
numbers is accomplished by subtracting the exponents. It is one of the laws of 
exponents, and looks like this:

Using actual numbers as an example, where x = 10, a = 4, b = 1:

The law of exponents works for any base number, not just 10. To wit:

People tend to make fewer mistakes when adding and subtracting numbers, so the 
advantage of logarithms is apparent. Remember that logarithms were developed 
before automatic mechanical or electronic computers were available. A slide rule 
exploits the properties of logarithms for calculation, but that is a separate major 
topic.

Those are simple examples, but hold for any base or exponent. In the absence of a 
calculator, in order to be useful for general application you need a table of numbers 
and their equivalent logarithms. Early log tables filled volumes, depending on the 
spacing between numbers (1.000, 1.001, 1.002, 1.003, vs. 1.0, 1.1, 1.2, 1.3, etc.). 
The good news for creators of logarithm tables is that only a single 'decade' of 
numbers (e.g., 1 through 10) is required since every preceding or succeeding decade
is a simple multiple of a power of 10.

Note: I use base 10 in this discussion since that is the base of our common number 
system - hence the term 'common logarithm' for base 10 logs. You might have heard
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of natural logarithms, which uses the base of e, but e is not used very often when 
calculating scalar electrical power, voltage, and current quantities (although it is used
when phase angles are included, i.e., Euler's identity). Natural logarithms are written 
as ln (x) without the 'e' subscript, whereas usually base 10 logarithms are written 
simply as log (x) without the 10 subscript; i.e., not loge (x) or log10 (x), respectively.

Per a base=10 log table:

log (100,000) = 5,   log (10,000) = 4,   log (1,000) = 3,   log (10) = 1

The base-10 (common) logarithm of a number, then,
is the exponent that 10 must be raised to in order to
obtain that number. In other words, since 10 raised

to the power of 2 is equal to 100 (102 = 100), the
base-10 log of 100 is 2 (log10 100 = 2).

This is the basic law of logarithms:

logc (a) = b,    therefore    cb = a

Performing the same multiplications and divisions as
done at the top of the page by using actual
logarithms:

10,000 * 10 = 100,000    and    10,000 ÷ 10 =
1,000

4 + 1 = 5    and    4 - 1 = 3

That's fine, but what you end up with is the logarithm of the number you seek. 
Question: Except for a simple example like this, how do you get the answer you 
need? Answer: Look up the antilogarithm (antilog) of the result. In this case:

antilog 5 = 100,000    and    antilog 3 = 1,000

A tougher, and more likely example with numbers that are not integer powers of 10, 
might look something like the following:

x = 1.28 * 3.70 * 0.559 * 26.4

log (x) = log (1.28) + log (3.70) + log (0.559) + log (26.4)

log (x) = 0.1072 + 0.5682 + (-0.2526) + 1.4216 = 1.8444

Since the logarithm of 'x' equals 1.8444, the antilog equals 'x,' which is 
69.9

Check: x = 1.28 * 3.70 * 0.559 * 26.4 = 69.9

I used my calculator to look up the logs and antilogs for those numbers,
but prior to 1972 when Hewlett Packard (HP) introduced their HP-35
scientific calculator, the average person without access to a corporate or university 
mainframe computer needed to use a log table to perform such calculations.

The exception and
special case is logx (0)
= Undefined. That is so
because there is no
power to which you
can raise any number
and obtain 0 (zero).
You can asymptotically
approach zero, but you cannot get to 
zero. There will never be the number 
zero displayed on a log scale; they 
usually run from some power of 10 to 
some other power of ten. An example of 
log graph paper is shown on the right. It 
has 5 'cycles' or 'decades' of range. Note
there is no zero on the y-axis.
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Who bothers to use logarithms today, you might ask? Lots of people, including me, 
quite often when calculating cascaded system parameters like noise figure (NF) and 
intercept points (IP). Simple addition and subtraction of gain dB and power dBm 
values don't work with NF and IP. The governing formulas use multiplication and 
division of linear gain and power values, which requires first converting dB and/or 
dBm to linear numbers (gain ratio and mW) using antilogs, performing the cascade 
calculations, and then converting the result back to dB and/or dBm using logs.

Not all system cascade operations require converting back and forth. For instance if 
only the total system gain and/or output power level is needed, then calculations can
be carried out with either linear units (mW and multipliers) or logarithmic units (dBm
and dB, respectively).

The Definition of 'dB' and 'dBm'

A decibel (dB) in electrical engineering is defined as 10 times the base-10 logarithm 
of a ratio between two power levels; e.g., Pout/Pin (gain, in other words):

dB = 10 * log10 (P1/P2)

All gains greater than 1 are therefore expressed as positive decibels (>0), and gains 
of less than 1 are expressed as negative decibels (<0). Note that for cases most of 
us encounter, the linear ratio of P1/P2 must be a positive number (>0) since the 
logarithm of 0 is undefined and the logarithm of negatives numbers are complex 
(they contain both a real and an imaginary part). The dB value, though, can 
theoretically take on any value between −∞ and +∞, including 0, which is a gain of 
1 [10 * log (1) = 0 dB].

'dBm' is a decibel-based unit of power that is referenced to 1 mW. Since 0 dB of gain 
is equal to a gain of 1, 1 mW of power is 0 dB greater than 1 mW, or 0 dBm. 
Similarly, a power unit of dBW is decibels relative to 1 W of power.

1 mW = 0 dBm

Accordingly, all dBm values greater than 0 are larger than 1 mW, and all dBm values 
less than 0 are smaller than 1 mW (see Fig. 1). For instance, +3.01 dBm is 3.01 dB 
greater than 1 mW; i.e., or 0 dBm + 3.01 dB = +3.01 dBm (2 mW). −3.01 dBm is 
3.01 dB less than 1 mW; i.e., or 0 dBm + (−3.01) dB = −3.01 dBm (0.5 mW).

The following table gives some numerical examples so you can see the correlation 
between mW and dBm. The same set of values plotted on a logarithmic scale would 
produce a straight line. Because of the logarithmic relationship, the graph bunches 
the smaller values against the left vertical axis. A magnified version of the 0 to 1 mW
region is inset for clarity.
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Fig. 1 - Graph of Power in Units of dBm vs. mW

Fig. 2 is a table and graph of dB vs. linear gain ratios similar to the dBm vs. mW in 
Fig. 1. Note that the numbers and curves are exactly the same; only the axis labels 
are changed. That is because dBm is a unit of power expressed in dB relative to 1 
mW (0 dBm).

Fig. 2 - Graph of Gain in Units of dBm vs. Linear Ratio

Linear Gain (output/input ratio) vs. Logarithmic (decibels, dB) Gain



Fundamentally, gain is a multiplication (or division) factor. As an example, an 
amplifier might have a gain that increases the signal by a factor of 4 (i.e., 4x) from 
input to output (see Fig. 3). If a 1 mW (0 dBm) signal is fed into the amplifier, then 1
mW * 4 = 4 mW comes out. In terms of decibels, a factor of 4 is equivalent to 10 * 
log (4) = 6.02 dB, so 0 dBm input plus 6.02 dB of gain yields +6.02 dBm at the 
output.

1 mW * 4 = 4 mW

0 dBm + 6.02 dB = 6.02 dBm

Fig. 3 - Single amplifier gain.

Combining Gains (linear and dB) w/Positive Values

If an amplifier with a gain of 4 is in series with a second amplifier with a gain of 6, 
then the total gain is 4 * 6 = 24. In terms of decibels, a factor of 6 is equivalent to 
10 * log (6) = 7.78 dB, and a factor of 24 is equivalent to 10 * log (24) = 13.8 dB.

Just as 4 x 6 = 24 (linear gain), 6.02 dB + 7.78 dB = 13.8 dB (decibel gain).

If a 1 mW signal (0 dBm) is fed into the amplifier, then 4 mW comes out of the first 
amplifier, and 24 mW comes out of the second amplifier. See Fig. 4.

1 mW * 4 * 6 = 24 mW

0 dBm + 6.02 dB + 7.78 dB = 13.8 dBm

Fig. 4 - Cascaded dual amplifier gain.

Combining Gain and Loss (linear and dB)

This next example shows what happens when a gain < 1 (a loss) is encountered, 
where an attenuator with a gain of 1/6 is placed after the first amplifier instead of 
having a second amplifier. See Fig. 5.

4 * 1/6 = 2/3 (linear gain). Similarly 6.02 dB - 7.78 dB = −1.76 dB (decibel gain).

As with the previous example, if a 1 mW signal (0 dBm) is fed into the amplifier with 
a gain of 4, then 4 mW comes out. That 4 mW then goes into the attenuator with a 
linear gain of 1/6 and comes out at a power level of 4/6 mW (2/3 mW).

The total gain in this case is 4/6 = 2/3, so the output power will actually be less than
the input power.

1 mW * 4 * 1/6 = 2/3 mW = 0.67 mW



0 dBm + 6.02 dB + (-7.78 dB) = −1.76 dBm

Fig. 5 - Cascaded amplifier gain and attenuator.

Note that power levels greater than 0 dBm sometimes include the 'plus' sign (+) in 
order to emphasize that it is not negative. This is particularly so when power levels 
are displayed on a block diagram where both positive and negative values are 
present.

Summary

When making power measurements in the laboratory or in the field, most people find
it easier to add and subtract gains and power levels than to multiply and divide gains
and power levels. dB and dBm units make that possible. The important thing to 
remember is to never mix linear gain (ratio) units and wattage power (mW) units 
with logarithmic gain (dB) and power (dBm) units.

Quantities must be either in all linear or all decibel units. The following type of 
calculation is NOT allowed because it mixes linear values with logarithmic values.

12 mW + 34 mW + 8 mW + 20 dB

Supplemental Information on Logarithms

Logarithms of Products

A property of logarithms used implicitly above states the following, and is the basis 
for being able to add and subtract logarithm values instead of multiplying their linear 
equivalents.

log (h*j)= log (h) + log (j),   and   log (h/j)= log (h) - log (j)

therefore,

log (h*j/k*m/n) = log (h) + log (j) - log (k) + log (m) - log (n)

'h * j / k * m / n' might represent a cascade of components that have three devices 
(h, j, and m) each with gain >1 and two devices (k and n) each with a gain <1 (see 
Fig. 6). The total system gain can be calculated either by multiplying all the linear 
gain values together or adding all the decibel gain values together.

Fig. 6 - Cascaded components



See more on properties of logarithms and properties of exponents.

Logarithms of Exponents

The following is important for understanding why power gain in terms of power is 10 
* log (Pout/Pin) dB, while power gain in terms of voltage is 20 * log (Vout/Vin) dB.

log (cf) = f * log (c),

which is so because cf is equal to c multiplied by itself 'f' times. For example, if f = 4:

cf = c4 = c * c * c * c

log (c4) = log (c * c * c * c) = log (c) + log (c) + log (c) + log (c) = 4 * log (c).

Power Gain Based on Power vs. Power Gain Based on Voltage

Power gain is Pout/Pin, and voltage gain is Vout/Vin. Power gain based on a power ratio
in decibels is defined as 10 * log (Pout/Pin). Power gain in terms of voltage, is 

[(Vout
2/R)/(Vin

2/R)], since per Ohm's law P = V2/R. The 'R' in the denominators 

cancel leaving Vout
2/Vin

2 , which is equal to (Vout/Vin)2, as defined by the rule of 

exponents that says ac/bc = (a/b)c. Hence:

10 * log  = 10 * 2 * log  = 20 * log 

Important Note: Voltage gain in terms of voltage is 10 * log (Vout/Vin) dB, the same 
as with power gain in terms of power. It is only when power gain is expressed in 
terms of voltage that the 20 * log (Vout/Vin) dB equation applies. This is a common 
point of confusion.

Gain <1 (Loss) as Negative Decibels

No operation in mathematics is arbitrary, and that goes for why a signal power loss 
(gain <1) is portrayed as a negative value, and hence is subtracted during a cascade 
calculation. It is a simple demonstration, but worthy of mentioning.

log (1/f) = log (1) - log (f) = 0 - log (f) = -log (f)
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added by K3PTO

dBm mW mV @ 50ohms uV @ 50ohms

1mW 0.0E+0 1.0E+0 223.6E-3 223.6E+0 223.6E+3

-10.0E+0 100.0E-3 70.7E-3 70.7E+0 70.7E+3

-20.0E+0 10.0E-3 22.4E-3 22.4E+0 22.4E+3

1uW -30.0E+0 1.0E-3 7.1E-3 7.1E+0 7.1E+3

-40.0E+0 100.0E-6 2.2E-3 2.2E+0 2.2E+3

-50.0E+0 10.0E-6 707.1E-6 707.1E-3 707.1E+0

-60.0E+0 1.0E-6 223.6E-6 223.6E-3 223.6E+0

-70.0E+0 100.0E-9 70.7E-6 70.7E-3 70.7E+0

S9 -73.0E+0 50.1E-9 50.1E-6 50.1E-3 50.1E+0

S8 -79.0E+0 12.6E-9 25.1E-6 25.1E-3 25.1E+0

-80.0E+0 10.0E-9 22.4E-6 22.4E-3 22.4E+0

S7 -85.0E+0 3.2E-9 12.6E-6 12.6E-3 12.6E+0

-90.0E+0 1.0E-9 7.1E-6 7.1E-3 7.1E+0

S6 -91.0E+0 794.3E-12 6.3E-6 6.3E-3 6.3E+0

S5 -97.0E+0 199.5E-12 3.2E-6 3.2E-3 3.2E+0

-100.0E+0 100.0E-12 2.2E-6 2.2E-3 2.2E+0

S4 -103.0E+0 50.1E-12 1.6E-6 1.6E-3 1.6E+0

S3 -109.0E+0 12.6E-12 793.4E-9 793.4E-6 793.4E-3

-110.0E+0 10.0E-12 707.1E-9 707.1E-6 707.1E-3

S2 -115.0E+0 3.2E-12 397.6E-9 397.6E-6 397.6E-3

-120.0E+0 1.0E-12 223.6E-9 223.6E-6 223.6E-3

S1 -121.0E+0 794.3E-15 199.3E-9 199.3E-6 199.3E-3

V @ 
50ohms



SWR dB Cable

1.10 0.01 1.002 0.998 LDF5-50A 0.36 0.83
1.15 0.02 1.005 0.995 LDF6-50A 0.36 0.57
1.18 0.03 1.007 0.993 LMR-900 0.53 1.17
1.21 0.04 1.009 0.991 LDF4-50A 0.66 1.51
1.24 0.05 1.012 0.989 LMR-400 1.23 2.7
1.27 0.06 1.014 0.986 RG-8 1.9 2.8-4.5
1.29 0.07 1.016 0.984 RG-213 2.12 5
1.31 0.08 1.019 0.982 LMR-240 2.46 5.3
1.33 0.09 1.021 0.979 RG-6A 2.8 6.3
1.36 0.1 1.023 0.977 RG-8X 3.26 7.5
1.54 0.2 1.047 0.955 RG-58 4 9-13
1.70 0.3 1.072 0.933
1.84 0.4 1.096 0.912
1.98 0.5 1.122 0.891
2.12 0.6 1.148 0.871
2.26 0.7 1.175 0.851
2.39 0.8 1.202 0.832
2.53 0.9 1.230 0.813
2.66 1 1.259 0.794
4.10 2 1.585 0.631
5.81 3 1.995 0.501

Power
Gain

Power
Remaining

Cable
Loss/100 ft
@100MHz

Cable
Loss/100 ft
@450MHz


